
USB Software Reference Manual
V2.11

INTRODUCTION

This manual acts as a reference for the USB function driver, “AIOUSB”, and other provided software

drivers and utilities that apply to our non-serial-port USB products.

Serial products simply appear as “COM” ports and are operated using the built-in Windows serial

interfaces, and thus programming for them is documented by Microsoft.

Note: Although this document may be a useful reference when programming for Linux or OSX,

please refer to the provided documentation trees in those distribution directories for

complete information.

How to use this reference

First, read the entirety of this introduction.

Next, read the source code of one of our sample programs in the programming language of your choice,

and refer to this manual for the description of each API used, if needed.

Because the AIOUSB driver is shared among all of our USB products, not all of the API information in this

manual will apply to your specific hardware.

In addition to providing a quick reference table at the start of each API function, certain quick-reference or

pertinent facts will be presented below the table, giving you valuable insight into the quirks or pitfalls you

may encounter.

Here’s a breakdown of what each category description in the table means:

DIGITAL INPUTS: TTL / CMOS / LVTTL (DI), and Isolated Input (IDI, II) types all included

here. AIOUSB treats all boolean inputs generically as “bits”. Contrast

with Buffered DI, DO, DIO, below.

DIGITAL OUTPUTS: TTL / CMOS / LVTTL and Isolated Output (RO, IDO) types are all

included here. AIOUSB treats all boolean outputs generically as “bits”.

Contrast with Buffered DI, DO, DIO, below.

ANALOG INPUTS: All inputs using “Analog-to-Digital Converter” chips. These boards

accept analog signals (voltage, current), and create data the computer

can use. Note there are two sub-types of Analog Inputs, those belonging

to analog input devices (the USB-AIx family), and those inputs provided

as a convenience on otherwise non-analog-input products. Most API

functions in this category only apply to the USB-AIx family of devices.

ANALOG OUTPUTS: All outputs that produce analog signals, including voltage and current.

Note there are two sub-types of Analog Outputs in our current USB

product lineup: Waveform and DC. Most API functions in this category

only apply to the “Waveform” capable USB-DA12-8A.

BUFFERED DI, DO, DIO: “High-Speed” digital “Bus” cards. This category applies only to boards

that use “bulk” USB to achieve speeds higher than the ~4000/second

transaction rate would otherwise allow, namely the USB-DIO-16H family.

COUNTER TIMERS: This category applies to counter-timer and other frequency devices, such

as the ever popular 8254. Generally used to count, measure, or produce

frequencies or pulse trains.

1

Note: many models are “Multi-Function” and use API functions from more than one of these categories,

and some specific API functions apply to all devices.

How to use the AIOUSB Driver

AIOUSB provides a standard interface for all Data Acquisition USB devices. Each specific USB device will

use a subset of the driver calls listed below, based on its specific capabilities and needs.

USB devices are plug-and-play. Every time the driver detects a new USB device it assigns it a new,

unused, Device Index. This is a temporary id, and will be different each time any given hardware device is

detected.

When using a single USB Device - ever:

You can choose to ignore the specific Device Index assigned by the driver, and instead refer to the device

by the constant “diOnly” (FFFFFFFD hex). This value tells the driver “Whichever Device Index exists,

that’s the one I want to talk with”. Most of our sample programs operate this way.

Please note: this is the simplest way to code, but it is not very future-proof. If you need to add a second

device years later, you’ll need to change your code.

When you are using, or might someday use, more than one device:

In all other cases the best practice is to assign each device a unique BOARD ID by writing a known BYTE

value into location “0” of the user-accessible “Custom EEPROM”.

Run the provided eWriter.exe utility to set this “BOARD ID” byte, or write your own application using the

CustomEEPROMWrite() function.

Avoid using FF hex or 00 hex as your BOARD IDs, as units can ship from the factory with these values.

Using a BOARD ID allows you to perform field-replacement of units by configuring the replacement board’s

ID to the same as the unit it is replacing. The software doesn’t need to be informed.

Once you’ve written the BOARD ID into each unit, you use GetDeviceByEEPROMByte() to resolve the

unique-and-unchanging BOARD ID into a detection-order-variable Device Index.

Your application may have code such as the following:

#define BOARD_ID_UUT (0x01) // value written into location zero in EEPROM for UUT

#define BOARD_ID_ATE_AO (0x40) // value written into location zero in EEPROM for AO board

#define BOARD_ID_ATE_AI (0x80) // value written into location zero in EEPROM for AI board

enum {UUT, ATEANALOGOUTPUTS, ATEANALOGINPUTS, SOMEOTHERDEVICE};

// deviceIndex is a global array of UInt32

deviceIndex[UUT] = GetDeviceByEEPROMByte(BOARD_ID_UUT);

deviceIndex[ATEANALOGOUTPUTS] = GetDeviceByEEPROMByte(BOARD_ID_ATE_AO);

deviceIndex[ATEANALOGINPUTS] = GetDeviceByEEPROMByte(BOARD_ID_ATE_AI);

or, to make your code more or less readable:

diUUT = GetDeviceByEEPROMByte(BOARD_ID_UUT);

diATE_AO = GetDeviceByEEPROMByte(BOARD_ID_ATE_AO);

diATE_AI = GetDeviceByEEPROMByte(BOARD_ID_ATE_AI);

2

For Device Index parameters to the AIOUSB API you would then pass the appropriate variable.

About Error/Status return values
Most return values are Microsoft defined “Win32” error codes.

ERROR_SUCCESS (equal to 0) means no error occurred.

If the USB device has been unplugged, functions will return ERROR_DEVICE_REMOVED (equal to 1617

decimal). Call ClearDevices() to clear this condition.

If this state is cleared and the board is not reconnected, the error returned is ERROR_FILE_NOT_FOUND

(equal to 2). You can also get ERROR_FILE_NOT_FOUND if you pass invalid filenames or paths to the API.

The full list of Windows error codes is in <winerror.h> or similar Microsoft-provided reference and can also

be found on the web.

The set of error codes the AIOUSB DLL can produce is the combined set called out in our AIOUSB.DLL

source code (provided) plus anything Microsoft’s lower-level code decides to throw our way.

DEVICE INDEPENDENT FUNCTIONS

This group of API calls can be used on any device, returning useful information about the device, dealing

with various status, warning, or error conditions, talking with the onboard EEPROM, and more.

FUNCTIONS YOU CALL AT INITIALIZATION

GetDeviceByEEPROMByte
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Use this function to determine the assigned Device Index of a device in a deterministic

way, especially if you’re controlling more than one device in the same system. Finds

the device with the specified byte value at address 0x000 in the custom EEPROM area.

Delphi: function GetDeviceByEEPROMByte(Data: Byte): LongWord; cdecl;

Visual C: unsigned long GetDeviceByEEPROMByte(unsigned char Data);

C#: UInt32 GetDeviceByEEPROMByte(Byte Data);

Argument Description

Data A single byte, generally treated as a “user board ID”, previously written into a device

using CustomEEPROMWrite, eWriter.exe, or other application software.

Returns: The current DeviceIndex of the card with matching “user board ID”. If there aren't any

matching devices, returns FFFFFFFF hex.

Note: This function only looks in the onboard EEPROM at location “0”. “Board ID” is

arbitrary, but you should avoid 0x00 and 0xFF, since those can match

uninitialized EEPROMs. If there are multiple matching devices, returns the first

one's device index (0-31) and sets the last error code to ERROR_DUP_NAME. If

there's one matching device, returns its device index and sets the last error

3

code to ERROR_SUCCESS. (You can get the last error code with the Win32 API

call GetLastError().)

GetDevices
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Optional if you know you’ll only ever have one device in your system at a time

Purpose: This function will provide a bit-map of which Device Indices were detected by the

driver.

Delphi: function GetDevices: LongWord; cdecl;

Visual C: unsigned long GetDevices(void);

C#: UInt32 GetDevices();

Returns: Returns a 32-bit bit-mask. Each bit set to "1" indicates an AIOUSB device was

detected at a device index corresponding to the set bit index. For example, if the

return is 0x00000104, then device indices 2 and 8 are detected devices.

Returns 0 if no devices found (which may mean the device is not installed properly, or

you are using an incorrect DLL version.)

Notes: This does not return one device index; it returns a pattern of bits indicating all valid

device indices.

This also prevents detection of more than 32 AIOUSB devices on one computer

simultaneously. Let us know if this is of any concern for your application.

Most applications using a single device can skip this call. Use diOnly (0xFFFFFFFD) as

your DeviceIndex instead.

GetDeviceByEEPROMByte() is the preferred discovery mechanism, and GetDevices() is

being phased out.

QueryDeviceInfo
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Optional if you know you’ll only ever have one model in your system at a time

Purpose: This function provides various data about the card at a given Device Index.

Delphi: function QueryDeviceInfo(DeviceIndex: LongWord; pPID: PLongWord; pNameSize:

PLongWord; pName: PChar; pDIOBytes, pCounters: PLongWord): LongWord; cdecl;

Visual C: unsigned long QueryDeviceInfo(unsigned long DeviceIndex, unsigned long *pPID,

unsigned long *pNameSize, char *pName, unsigned long *pDIOBytes, unsigned long

*pCounters);

C#: UInt32 QueryDeviceInfo(UInt32 DeviceIndex, out UInt32 pPID, ref UInt32 pNameSize,

out String Name, out UInt32 pDIOBytes, out UInt32 pCounters)

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

4

pPID Pointer to PID (“Product ID”), a number indicating which hardware device was

found at the specified DeviceIndex. Each device has a model-specific Product ID,

see the hardware manual for your devices. This variable is set by the function, and

does not need to be initialized prior to use. You can pass “null” if you don’t need

to know the PID.

pNameSize Pointer to NameSize. Pass in the length of your Name buffer (in bytes) to prevent

buffer overruns, and the function will set this to the actual name length. If your

buffer is too small, the Name data will be truncated. You can pass “null”.

pName Pointer to Name, a byte array variable. This is an array of characters, not a null-

terminated string. The length of the string is passed back via pNameSize. Set by

the driver to the model name of the specified device. You can pass “null”.

pDIOBytes Pointer to DIOBytes. Set by the driver to the number of digital input/output byte-

groups. You can pass “null”

pCounters Pointer to Counters. Set by the driver to the number of 8254-style counter/timer

groups. You can pass “null”.

Returns: Windows standard “Win32" error codes. 0 means “Success”.

Notes: It is common to call this function with “null” for most parameters. Most applications

need only the DeviceIndex and pPID, simply to verify which device type is present at

the DeviceIndex given. The additional parameters allow a more user-friendly

experience if your program supports multiple card types.

GetDeviceSerialNumber
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Provides the on-board nonvolatile serial number.

Delphi: function GetDeviceSerialNumber(DeviceIndex: LongWord; var pSerialNumber: Int64):

LongWord; cdecl;

Visual C: unsigned long GetDeviceSerialNumber(unsigned long DeviceIndex, unsigned __int64

*pSerialNumber);

C#: UInt32 GetDeviceSerialNumber(UInt32 DeviceIndex, out UInt64 pSerialNumber);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; either diOnly or a specific device’s

Device Index.

pSerialNumber Pointer to an 8-byte (64-bit) value to fill with the serial number.

Returns: Windows standard “Win32" error codes. 0 means “Success”.

Notes: This serial number is not related to the serial number on the physical label of the

device.

FUNCTIONS YOU CALL AT DEINITIALIZATION

AIOUSB_CloseDevice

5

APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Applies to every device, but rarely useful

Purpose: Explicitly closes handles to a device.

Delphi: function AIOUSB_CloseDevice(DeviceIndex: LongWord): LongWord; cdecl;

Visual C: unsigned long AIOUSB_CloseDevice(unsigned long DeviceIndex);

C#: UInt32 AIOUSB_CloseDevice(UInt32 DeviceIndex);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; either diOnly or a specific device’s

Device Index.

Returns: Windows standard “Win32" error codes. 0 means “Success”.

Notes: Used in version 8.xx of the AIOUSB driver package (WinUSB) to support multi-process

programming. Deprecated as of 9.xx (CyUSB) AIOUSB drivers.

ClearDevices
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Use when you get errors from the device being unplugged unexpectedly

Purpose: Closes handles and clears records of unplugged devices.

Delphi: function ClearDevices: LongWord; cdecl;

Visual C: unsigned long ClearDevices(void);

C#: UInt32 ClearDevices();

Returns: Windows standard “Win32" error codes. 0 means “Success”.

Notes: Use this function to clear out the “ghost” DeviceIndices. Typically called when a

device removal has been detected, either by the “Windows Message” method, or

because API functions are returning “ERROR_DEVICE_REMOVED” or

“ERROR_FILE_NOT_FOUND”.

ResolveDeviceIndex
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Purpose: Returns a device index from 0-31 corresponding to the “predefined constant” passed

in, or FFFFFFFF hex if it can't be resolved.

Delphi: function ResolveDeviceIndex(DeviceIndex: LongWord): LongWord; cdecl;

Visual C: unsigned long ResolveDeviceIndex(unsigned long DeviceIndex);

C#: UInt32 ResolveDeviceIndex(UInt32 DeviceIndex);

Argument Description

6

DeviceIndex Pass in diOnly or diFirst.

Returns: Returns the actual, detected, DeviceIndex that the parameter is interpreted as

Notes: This function is provided primarily for use during debugging.

GetDeviceByEEPROMData
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED

DI, DO, DIO

COUNTER

TIMERS

Purpose: Finds a device based on custom EEPROM data. Like GetDeviceByEEPROMByte(),

except that it can look for more than a single byte, and at any location in the custom

EEPROM area. Deterministically translates from non-volatile EEPROM-stored data into

a DeviceIndex

Delphi: function GetDeviceByEEPROMData(StartAddress, DataSize: LongWord; pData: PByte):

LongWord; cdecl;

Visual C: unsigned long GetDeviceByEEPROMData(unsigned long StartAddress, unsigned long

DataSize, unsigned char *pData);

C#: UInt32 GetDeviceByEEPROMData(UInt32 StartAddress, UInt32 DataSize, [In, Out]

Byte[] pData);

Argument Description

StartAddress The address of the beginning of the block to look for in the custom EEPROM area

 DataSize The number of consecutive bytes to look for in the EEPROM

pData A pointer to the block of data to look for, generally treated as a “user board ID”,

previously written into a device using CustomEEPROMWrite, eWriter.exe, or other

application software.

Returns: The current DeviceIndex of the card with matching “user board ID”. If there aren't any

matching devices, returns FFFFFFFF hex.

Notes: If there are multiple matching devices, returns the first one's device index (0-31) and

sets the last error code to ERROR_DUP_NAME. If there's one matching device, returns

its device index and sets the last error code to ERROR_SUCCESS. (You can get the last

error code with the Windows API call GetLastError().)

OTHER COMMON FUNCTIONS

In general CustomEEPROMWrite() and CustomEEPROMRead() can be used at any time in your application,

but most applications will not need to.

CustomEEPROMWrite
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: This function writes to the user-accessible EEPROM

7

Language Signature

Delphi: function CustomEEPROMWrite(DeviceIndex: LongWord; StartAddress: LongWord;

DataSize: LongWord; Data: Pointer): LongWord; cdecl;

Visual C: unsigned long CustomEEPROMWrite(unsigned long DeviceIndex, unsigned long

StartAddress, unsigned long DataSize, void *pData);

C#: UInt32 CustomEEPROMWrite(UInt32 DeviceIndex, UInt32 StartAddress, UInt32

DataSize, [In, Out] Byte[] Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

StartAddress number from 0x000 to 0x1FF of the first EEPROM byte you wish to write to.

DataSize number of custom EEPROM bytes to write. The last custom EEPROM byte is 0x1FF,

so StartAddress plus DataSize can't be greater than 0x200.

Data pointer to the start of a block of bytes to write to the custom EEPROM area.

Returns: Windows standard “Win32" error codes. 0 means “Success”.

Notes: If you write a one unique byte to StartAddress zero you can use

GetDeviceByEEPROMByte() to robustly determine the DeviceIndex of your devices.

Refer to GetDeviceByEEPROMByte() for more information.

EWriter.exe is provided to perform this and other EEPROM functions, so your code

doesn’t have to.

CustomEEPROMRead
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: This function reads data previously written by CustomEEPROMWrite() or application

software.

Delphi: function CustomEEPROMRead(DeviceIndex: LongWord; StartAddress: LongWord; var

DataSize: LongWord; Data: Pointer): LongWord; cdecl;

Visual C: unsigned long CustomEEPROMRead(unsigned long DeviceIndex, unsigned long

StartAddress, unsigned long *DataSize, void *pData);

C#: UInt32 CustomEEPROMRead(UInt32 DeviceIndex, UInt32 StartAddress, ref UInt32

DataSize, [In, Out] Byte[] Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

StartAddress number from 0x000 to 0x1FF of the first EEPROM byte you wish to write to.

DataSize number of custom EEPROM bytes to write. The last custom EEPROM byte is 0x1FF,

so StartAddress plus DataSize can't be greater than that.

Data pointer to the start of a block of bytes to write to the custom EEPROM area.

Returns: Windows standard “Win32" error codes. 0 means “Success”.

8

Notes: Devices are shipped with 0x00 in all custom EEPROM bytes.

DIGITAL INPUT / OUTPUT

Our driver supports two broad classes of Digital I/O: “Fast” or “Buffered” DIO, and “Slow” or “Normal”

DIO.

“Normal” DIO on the USB bus means not-more-than 4000 transactions per second. Buffered DIO is

described in the “Buffered DIO” section, and refers to digital bits capable of 8 to 40 MHz - or even faster -

operations. Buffered DIO boards have both kinds of DIO on them, so you will need to refer to both

sections, and the DIO_Configurex family of functions is used with both kinds of boards.

I/O Groups

Digital I/O (DIO) generally consists of several groups of 8 TTL/CMOS digital pins capable of being

configured as either input or output, but only as a group.

Many devices act very similar to the venerable 8255 device, wherein the unit provides a 50-pin IDC header

with 24 digital I/O lines often called Port A, Port B, and Port C, compatible with OPTO-22 module racks.

Other devices may only provide two 8-bit ports, called Port 0 and Port 1, or, each bit may be selectable on

a bit-by-bit basis as either input or output.

Each collection of pins able to be configured for input or output, but only together, is referred to as an “I/O

Group.”

Most devices of this type provide TTL/CMOS compatible pins. Other devices may provide three-volt

signals, called 3.0VDC, 3.3VDC, or LVTTL, via either jumper selection, software selection, or factory

option.

Regardless of the number of I/O Groups or TTL / CMOS / LVTTL voltages of the pins, these types of digital

bits are referred to as “TTL DIO,” “standard DIO,” or simply “DIO.”

Relays as DIO

Alternately, Digital Outputs may refer to solid-state relay or electro-mechanical relay outputs, while Digital

Inputs may refer to optically- or electrically- isolated digital input bits. In both cases the voltage and

current ranges far exceed the standard TTL/CMOS / LVTTL capability of “standrd DIO,” and may be

referred to collectively as “isolated digital bits,” “Isolated DIO,” “IDIO,” or “IIRO.” Further, inputs of these

types may be called “IDI”, “II”, or “Isolated Inputs”, while outputs may be referred to as “IDO”, “RO”, or

“Isolated DO”.

The AIOUSB API provides a single, unified collection of functions, or Application Programming Interface

(API) to talk to all of these flavors of digital inputs and outputs, designated the “DIO_” API.

One stark difference between DIO and IDIO is the contrast in “I/O Groups”. IDIO pins do not belong to

any I/O Groups. Each isolated digital bit, be it input or output, is fixed to that state, and cannot be

changed from one to the other.

Another difference is the useful speed of the bits. DIO bits can be read or driven as fast as the USB bus

allows; generally one transaction (input or output) every 250usec under optimum conditions. IDO and RO

bits could be driven at the same speeds, but because of the high-current drive, high-voltage capability,

and / or electro-mechanical nature of the outputs, the fastest an output can usefully be driven is limited to

once every 5 milliseconds or so. Similarly, isolated inputs, because of the isolation and (optional) filtering,

rarely respond to input changes lasting less than ten milliseconds.

9

This distinction becomes an important factor when using functions such as DIO_WriteAll(). On a typical

DIO board you very clearly have n I/O Groups, each of which has a byte, which you pass to the

DIO_WriteAll function in an array, with each byte being the next group’s data.

On IDIO / IIRO boards you still have the array of bytes, but do not know which bytes are the inputs or

outputs.

In all cases outputs come first in the array for IDIO / IIRO devices. Conceptually this is because outputs

usefully have two functions: output and read back, while inputs only usefully read.

Regardless of DIO vs IDIO, the outputs are always safe to read from and will return the latest data

written; the inputs are safe to write to, and will simply ignore any data written.

DIO_Configure
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The structure format changes based on how many bytes of data the card family supports

Purpose: Configure Digital Input/Output “I/O Groups” for use as input or as output digital bits,

and set the default state of any output bits. On some products can globally

enable/tristate all DIO bits.

Delphi: function DIO_Configure(DeviceIndex: LongWord; Tristate: ByteBool; pOutMask:

Pointer; pData: Pointer): LongWord; cdecl;

Visual C: unsigned long DIO_Configure(unsigned long DeviceIndex, unsigned char bTristate,

void *pOutMask, void *pData);

C#: UInt32 DIO_Configure(UInt32 DeviceIndex, Byte Tristate, ref UInt32 OutMask, ref

UInt32 Data);

UInt32 DIO_Configure(UInt32 DeviceIndex, Byte Tristate, ref Int16 OutMask, Byte[]

Data);

UInt32 DIO_Configure(UInt32 DeviceIndex, Byte Tristate, Byte[] OutMask, Byte[]

Data);

UInt32 DIO_Configure(UInt32 DeviceIndex, Byte Tristate, ref Byte OutMask, ref Byte

Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

bTristate TRUE causes all bits on the device to enter tristate (high-impedance) mode.

FALSE removes the tristate. The tristate is changed after the remainder of the

configuration has occurred. All devices with this feature power-on in the "tristate"

mode at this time.

pOutMask A pointer to array of bits; one bit per “I/O Group”. Each "1" bit in the array

indicates that the corresponding “I/O Group” of the device is to be configured as

Output.

pData A pointer to an array of bytes. Each byte is copied to the digital output ports on

the device before the ports are taken out of tristate. Any bytes in the array

associated with ports configured as input are ignored.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: In this context “I/O Group” means "a group of one or more DIO bits for which a single

10

direction control bit determines the input vs output state for all the bits in the group."

Most cards use 1 bit per 8 DIO pins; others use 1 bit per DIO pin. Other groupings are

possible: the USB-DIO-16H family uses 4 bits; one for 8-bit group A, one for 4-bit

group B, and one each for 3-bit groups C and D.

When more than one bit is in each group “I/O Groups” are often referred to as “Ports”.

In these cases, the length of the array pointed to by pData should be the same

number of bytes as the number of “I/O Group” control bits, even if a specific “I/O

Group” contains fewer than 8 bits - significant bits are LSB aligned, and extra bits are

ignored.

However, in the “one bit per group” case (USB-DIO-32I, for example), pData is

effectively an array of bits, not bytes, as each bit is copied onto the output bits in a 1-

to-1 fashion.

The sizes of the out mask and data for specific, representative, DIO boards are as

follows:

USB-DIO-32 USB-DIO-32I USB-IIRO-xx USB-Dxx16A USB-DIO-96 USB-AIx

Out Mask 1 byte 4 bytes 1 byte 1 byte 2 bytes 1 byte

Data 4 bytes 4 bytes 4 bytes 4 bytes 12 bytes 2 bytes

DIO_ConfigureEx
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The USB-DIO-16A family has only two tristate groups, “A”, and “all other digital ports”

Purpose: Configure Digital Input/Output “I/O Groups” for use as input or as output digital bits,

and set the default state of any output bits. On some products can globally

enable/tristate all DIO bits.

Delphi: function DIO_ConfigureEx(DeviceIndex: LongWord; pOutMask: Pointer; pData:

Pointer; pTristateMask: Pointer): LongWord; cdecl;

Visual C: unsigned long DIO_ConfigureEx(unsigned long DeviceIndex, void *pOutMask, void

*pData, void *pTristateMask);

C#: UInt32 DIO_ConfigureEx(UInt32 DeviceIndex, Byte[] pOutMask, Byte[] pData, Byte[]

pTristateMask);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pOutMask A pointer to array of bits; one bit per “I/O Group”. Each "1" bit in the array

indicates that the corresponding “I/O Group” of the device is Output.

pData A pointer to an array of bytes. Each byte is copied to the digital output ports on

the device before the ports are taken out of tristate. Any bytes in the array

associated with ports configured as input are ignored.

pTristateMask A pointer to array of bits; one bit per “Tristate Group”. Each "1" bit in the array

indicates that the corresponding “Tristate Group” of the device is to be tristated.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

11

Notes: Please refer to DIO_Configure for additional information.

DIO_ConfigurationQuery
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Normally your program will simply “remember” what it last sent to “DIO_Configure...”

Purpose: Determine DIO port direction and tristate-related information about the device found

at a specific DeviceIndex

Delphi: function DIO_ConfigurationQuery(DeviceIndex: LongWord; pOutMask: Pointer;

pTristateMask: Pointer): LongWord; cdecl;

Visual C: unsigned long DIO_ConfigurationQuery(unsigned long DeviceIndex, void *pOutMask,

void *pTristateMask);

C#: UInt32 DIO_ConfigurationQuery(UInt32 DeviceIndex, [In, Out] Byte[]

pOutMask, [In, Out] Byte[] pTristateMask);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

pOutMask a pointer to the first element of an array of bytes; one byte per 8 ports or fraction.

Each bit in the array will be set to "1" if the corresponding port is an Output, or "0"

if it's an Input

pTristateMask a pointer to the first element of an array of bytes; one byte per 8 tristate groups or

fraction. Each bit in the array will be set to "1" if the corresponding tristate group

is in tristate (high-impedance) mode, or a "0" if not

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function is not yet implemented on all devices. Please consult with the factory if

you need to use it.

DIO_WriteAll
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The most efficient method of writing to digital outputs

Purpose: Write to all digital outputs on a device

Delphi: function DIO_WriteAll(DeviceIndex: LongWord; pData: Pointer): LongWord; cdecl;

Visual C: unsigned long DIO_WriteAll(unsigned long DeviceIndex, void *pData);

C#: UInt32 DIO_WriteAll(UInt32 DeviceIndex, ref UInt32 Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pData pointer to the first element of an array of bytes. Each byte is copied to the

corresponding output byte. Bytes written to ports configured as inputs are ignored

12

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The number of bytes in the pData array needs to be the same as described for “pData”

under DIO_Configure. This operation consumes one USB transaction, regardless of the

number of bits on the device. Bits written to ports configured as “input” will be

ignored. The USB-IIRO-xx and USB-IDIO-xx families’ outputs are bytes 0 and 1 in the

array; the inputs are bytes 2 and 3.

DIO_Write8
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

This function will give unexpected results unless you call DIO_WriteAll or DIO_Configure... first.

Purpose: Write to a single byte-worth of digital outputs on a device

Delphi: function DIO_Write8(DeviceIndex, ByteIndex: LongWord; Data: Byte): LongWord;

cdecl;

Visual C: unsigned long DIO_Write8(unsigned long DeviceIndex, unsigned long ByteIndex,

unsigned char Data);

C#: UInt32 DIO_Write8(UInt32 DeviceIndex, UInt32 ByteIndex, Byte Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

ByteIndex Number of the byte you wish to change.

Data One byte. The byte will be copied to the port outputs. Each set bit will cause the

equivalent port bit to be set to "1"

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Bytes written to ports configured as “input” are ignored.

The USB-IIRO-xx and USB-IDIO-xx families’ outputs are bytes 0 and 1 in the array;

the inputs are bytes 2 and 3. This is true even for 8-bit models, and models with only

inputs. I.e., the USB-II-8's input byte is located at Data[2].

Warning: This function is usually implemented in the DLL: the DLL remembers the most recently

written DIO data for all ports, and merges the byte sent to DIO_Write8, then sends

the actual hardware a DIO_WriteAll() command. Therefore, do not use this function

simultaneously to control digital bits on a single device from multiple processes.

DIO_Write1
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

This function will give unexpected results unless you call DIO_WriteAll or DIO_Configure first.

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function DIO_Write1(DeviceIndex, BitIndex: LongWord; Data: ByteBool): LongWord;

cdecl;

Visual C: unsigned long DIO_Write1(unsigned long DeviceIndex, unsigned long BitIndex,

13

unsigned char bData);

C#: UInt32 DIO_Write1(UInt32 DeviceIndex, UInt32 BitIndex, Byte Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BitIndex Number of the bit you wish to change.

bData TRUE will set the bit to "1", FALSE will clear the bit to "0"

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Bits written to ports configured as “input” are ignored.

The USB-IIRO-xx and USB-IDIO-xx families’ outputs are bits 0-15; the inputs are bits

16-31. This is true even for 8-bit models, and models with only inputs. I.e., the USB-

II-8's first input bit is located at BitIndex 16.

Warning: This function is usually implemented in the DLL: the DLL remembers the most recently

written DIO data for all ports, and merges the bit sent to DIO_Write1(), then sends

the actual hardware a DIO_WriteAll() command. Therefore, do not use this function

simultaneously to control digital bits on a single device from multiple processes.

Also, on boards that do not need a DIO_Configure() call before outputs are

operational, make sure to call DIO_WriteAll() at least once, to initialize the DLL’s

memory. You can call DIO_Configure() instead of DIO_WriteAll(), and doing so helps

future-proof your code for compatibility with other devices.

DIO_ReadAll
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The most efficient method of reading digital inputs.

Purpose: Read all digital bits on a device, including read-back of ports configured as “output”

Delphi: function DIO_ReadAll(DeviceIndex: LongWord; pData: Pointer): LongWord; cdecl;

Visual C: unsigned long DIO_ReadAll(unsigned long DeviceIndex, void *Buffer);

C#: UInt32 DIO_ReadAll(UInt32 DeviceIndex, out UInt32 Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

pBuffer pointer to the first element of an array of bytes. Each port will be read, and the

reading stored in the corresponding byte in the array.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

14

Notes: The number of bytes in the pBuffer array needs to be the same as described for

“pData” under DIO_Configure. This operation consumes one USB transaction,

regardless of the number of bits on the device.

The USB-IIRO-xx and USB-IDIO-xx families’ inputs are bytes 2 and 3; the outputs’

readback are bytes 0 and 1 in the array. This is true even for 8-bit models, and

models with only inputs. I.e., the USB-II-8's input byte is located at Data[2].

DIO_Read8
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The driver performs a ReadAll and returns the selected byte

Purpose: Read one byte of digital data from the device

Delphi: function DIO_Read8(DeviceIndex, ByteIndex: LongWord; Buffer: PByte): LongWord;

cdecl;

Visual C: unsigned long DIO_Read8(unsigned long DeviceIndex, unsigned long ByteIndex,

unsigned char *pBuffer);

C#: UInt32 DIO_Read8(UInt32 DeviceIndex, UInt32 ByteIndex, out Byte Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

ByteIndex Number of the byte you wish to read.

pBuffer Pointer to one byte. The byte will contain the reading or readback from the port

specified by ByteIndex. Each set bit indicates the equivalent port bit read as "1"

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The USB-IIRO-xx and USB-IDIO-xx families’ inputs are bytes 2 and 3; the outputs are

bytes 0 and 1. This is true even for 8-bit models, and models with only inputs. I.e.,

the USB-II-8's first input byte is located at ByteIndex 2.

DIO_Read1
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The driver performs a ReadAll and returns the selected bit

Purpose: Read one bit of digital data from a device.

Delphi: function DIO_Read1(DeviceIndex, BitIndex: LongWord; Buffer: PByte): LongWord;

cdecl;

Visual C: unsigned long DIO_Read1(unsigned long DeviceIndex, unsigned long BitIndex,

unsigned char *Buffer);

C#: UInt32 DIO_Read1(UInt32 DeviceIndex, UInt32 BitIndex, out Byte Data);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

15

BitIndex Number of the bit you wish to read.

pBuffer Pointer to one byte; will be set to “1” or “0” to indicate the state of the bit read (or

readback).

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The USB-IIRO-xx and USB-IDIO-xx families’ inputs are bits 16-31; the outputs are

bits 0-15. This is true even for 8-bit models, and models with only inputs. I.e., the

USB-II-8's first input bit is located at BitIndex 16.

BUFFERED DIO
Our driver supports two broad classes of Digital I/O: “Fast” or “Buffered” DIO, and “Slow” or “Normal”

DIO.

This section refers exclusively to “Buffered” DIO. “Normal” DIO is described in the “Digital Input / Output”

section, and refers to digital bits capable of DC to 4kHz transaction rate operation.

Buffered DIO boards have both kinds of DIO on them, so you will need to refer to both sections, and the

DIO_Configure family of functions is used in either case.

Buffered Digital I/O is currently supported only on the USB-DIO-16H family of products.

This product family can input, output, or either, at continuous speeds of at least 8MHz per 16-bit word,

and burst speeds in excess of 40MHz (for the depth of the onboard FIFO).

To use the fast digital bits, issue a DIO_Configure(), DIO_StreamOpen(), DIO_StreamSetClocks(), loop

while calling DIO_StreamFrame(), and call DIO_StreamClose() when finished.

DIO_StreamOpen
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Configure a USB-DIO-16H family device for use as input or output

Delphi: function DIO_StreamOpen(DeviceIndex: LongWord; bIsRead: LongBool): LongWord;

cdecl;

Visual C: unsigned long DIO_StreamOpen(unsigned long DeviceIndex, unsigned long bIsRead);

C#: UInt32 DIO_StreamOpen(UInt32 DeviceIndex, UInt32 bIsRead);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

bIsRead boolean. TRUE will open a stream for reading, FALSE will open a stream for

writing.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Call DIO_ConfigureEx() and DIO_StreamSetClocks() as well, before sending/receiving

data using DIO_StreamFrame()

16

DIO_StreamClose
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Terminate the input or output operation on a USB-DIO-16H family device.

Delphi: function DIO_StreamClose(DeviceIndex: LongWord): LongWord; cdecl;

Visual C: unsigned long DIO_StreamClose(unsigned long DeviceIndex);

C#: UInt32 DIO_StreamClose(UInt32 DeviceIndex);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: For best results, should be called before your application closes.

DIO_StreamSetClocks
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Configure the highspeed port for external or internal clock source, and, if internal, the

frequency thereof.

Delphi: function DIO_StreamSetClocks(DeviceIndex: LongWord; var ReadClockHz,

WriteClockHz: Double): LongWord; cdecl;

Visual C: unsigned long DIO_StreamSetClocks(unsigned long DeviceIndex, double

*ReadClockHz, double *WriteClockHz);

C#: UInt32 DIO_StreamSetClocks(UInt32 DeviceIndex, ref Double ReadClockHz, ref

Double WriteClockHz);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pReadClockHz a pointer to an IEEE double-precision value indicating the desired frequency of an

internal read clock.

pWriteClockHz a pointer to an IEEE double-precision value indicating the desired frequency of an

internal write clock.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Use "0" to indicate “External clock mode”

The Read and Write clock variables will be modified to indicate the Hz rate to which

the unit will actually be configured: not all frequencies you can specify with a IEEE

double can be achieved by the frequency generation circuit. Our DLL calculates the

closest achievable frequency. If you’re interested, you can consult the LTC6904

17

chipspec for details, or the provided source for the DLL.

The slowest available frequency from the onboard generator is 1kHz; the fastest

usable is 40MHz (the limit of the standard FIFO); the fastest useful for non-burst

operation is ~8MHz (the streaming bandwidth limit of the USB->digital interface logic

and code is 8MHz minimum, often as high as 12MHz if your computer is well

optimzed.)

DIO_StreamFrame
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

If opened as input, the FramePoints must be a multiple of 256 or you will generate error 31

“ERROR_GEN_FAILURE”

Purpose: Send or Receive “fast” data across the DIO bus.

Delphi: function DIO_StreamFrame(DeviceIndex, FramePoints: LongWord; pFrameData:

PWord; var BytesTransferred: DWord): LongWord; cdecl;

Visual C: unsigned long DIO_StreamFrame(unsigned long DeviceIndex, unsigned long

FramePoints, unsigned short *pFrameData, unsigned long *BytesTransferred);

C#: UInt32 DIO_StreamFrame(UInt32 DeviceIndex, UInt32 FramePoints, [In, Out] Byte[]

FrameData, out UInt32 ByteTransferred);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

FramePoints number of WORD-sized points you wish to stream

pFrameData pointer to the beginning of the block of data you wish to stream

BytesTransferred pointer to a DWORD that will receive the amount of data actually transferred, in

BYTEs

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function is used for either input or output operation. “Stream” can be interpreted

“upload,” “write,” “read,” “download,” “send,” “receive,” or any similar term.

COUNTER / TIMERS

An important note about the CTR_8254 family of functions:

Each of these functions is designed to operate in one of two addressing modes. The parameter

“BlockIndex” refers to 8254 chips, each of which contains 3 “Counters”. CounterIndex refers

to the counters inside the 8254s. In the primary addressing mode you specify the block and

the counter. In the secondary addressing mode, you specify zero (0) for the block, and

consider the counters to be addressed sequentially. That is, BlockIndex 3, CounterIndex 1 can

also be addressed as BlockIndex 0, CounterIndex 10. The equation to determine the

secondary, or sequential, CounterIndex given the primary or block values is as follows (they

simply count consecutively):

18

sequential PrimaryCounterIndex = BlockIndex * 3 + CounterIndex

CounterIndex values associated with BlockIndex 0 are compatible with either addressing mode,

there is no need to tell the driver which addressing mode you wish to use.

Specific, common, counter / timer tasks:

Frequency Generation: To generate a frequency using an 8254 wired in the “standard” way,

use CTR_8254StartOutputFreq (). Refer to that function for more information.

Event Counting: To count up to 65535 events per 8254 wired in the standard way, mode

counter 1 in mode 1, mode counter 0 in mode 0, and load counter 0 with “0”. Make sure to not

load any count value into counter 1. Read counter 0 to determine the number of times it has

decremented since the last time you read it.

CTR_8254Mode
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Configure the mode of operation for a specified counter.

Delphi: function CTR_8254Mode(DeviceIndex, BlockIndex, CounterIndex, Mode: LongWord):

LongWord; cdecl;

Visual C: unsigned long CTR_8254Mode(unsigned long DeviceIndex, unsigned long BlockIndex,

unsigned long CounterIndex, unsigned long Mode);

C#: UInt32 CTR_8254Mode(UInt32 DeviceIndex, UInt32 BlockIndex, UInt32 CounterIndex,

UInt32 Mode);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BlockIndex Index of the 8254 chip you wish to control. See note at the beginning of this

section.

CounterIndex Index of the 8254 counter you wish to control. See note at the beginning of this

section.

Mode A number, from 0 to 5, specifying to which 8254 mode you want the specified

counter to be configured.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Calling CTR_8254Mode() will halt the counter specified until CTR_8254Load() or

CTR_8254ModeLoad() is called.

Neat trick:

Configuring a counter for Mode 0 will set that counter’s output LOW.

Configuring a counter for Mode 1 will set that counter’s output HIGH.

This can be used to convert a counter into an additional, albeit slow, digital

output bit. The output pin will remain as configured until/unless the

counter is “loaded” with a count value.

CTR_8254Load

19

APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Load a counter with a 16-bit count-down value.

Delphi: function CTR_8254Load(DeviceIndex, BlockIndex, CounterIndex: LongWord;

LoadValue: Word): LongWord; cdecl;

Visual C: unsigned long CTR_8254Load(unsigned long DeviceIndex, unsigned long BlockIndex,

unsigned long CounterIndex, unsigned short LoadValue);

C#: UInt32 CTR_8254Load(UInt32 DeviceIndex, UInt32 BlockIndex, UInt32 CounterIndex,

UInt16 LoadValue);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BlockIndex Index of the 8254 chip you wish to control. See note at the beginning of this

section.

CounterIndex Index of the 8254 counter you wish to control. See note at the beginning of this

section.

LoadValue A number, from 0 to 65535, specifying how many counts to load in the counter

specified.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: A load value of “0” is indistinguishable from a (hypothetical) load value of 65536.

Some modes do not support a load value of “1”. Other modes support neither “1” nor

“2” as load values.

CTR_8254ModeLoad
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Configure the mode of operation for a specified counter, and load that counter with a

16-bit count-down value.

Delphi: function CTR_8254ModeLoad(DeviceIndex, BlockIndex, CounterIndex, Mode:

LongWord; LoadValue: Word): LongWord; cdecl;

Visual C: unsigned long CTR_8254ModeLoad(unsigned long DeviceIndex, unsigned long

BlockIndex, unsigned long CounterIndex, unsigned long Mode, unsigned short

LoadValue);

C#: UInt32 CTR_8254ModeLoad(UInt32 DeviceIndex, UInt32 BlockIndex, UInt32

CounterIndex, UInt32 Mode, UInt16 LoadValue);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

20

BlockIndex Index of the 8254 chip you wish to control. See note at the beginning of this

section.

CounterIndex Index of the 8254 counter you wish to control. See note at the beginning of this

section.

Mode A number, from 0 to 5, specifying to which 8254 mode you want the specified

counter to be configured.

LoadValue A number, from 0 to 65535, specifying how many counts to load in the counter

specified.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This operation takes a single USB transaction, making it at least 250usec faster than

issuing the two operations independently.

See CTR_8254Mode() and CTR_8254Load() for more notes.

CTR_StartOutputFreq
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function CTR_StartOutputFreq(DeviceIndex, BlockIndex: LongWord; pHz: PDouble):

LongWord; cdecl;

Visual C: unsigned long CTR_StartOutputFreq(unsigned long DeviceIndex, unsigned long

CounterIndex, double *pHz);

C#: UInt32 CTR_StartOutputFreq(UInt32 DeviceIndex, UInt32 BlockIndex, ref double Hz);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BlockIndex Index of the 8254 from which you wish to output a frequency. Most devices only

contain one 8254, and therefore BlockIndex should be “0” for those units.

pHz pointer to a double precision IEEE floating point number containing the desired

output frequency. This value is set by the driver to the actual frequency that will

be output, as limited by the device’s capabilities.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function requires that the individual counters in the 8254 specified be wired up as

follows: 10MHz -> IN1 and OUT1 -> IN2. If the 10MHz is replaced with other

frequencies, the pHz calculation may scale predictably.

This wiring is provided by the USB-CTR-15's “Standard Configuration Adapter” and is

the permanent wiring configuration of most 8254s on our USB product line.

The USB-CTR-15 can output as many as 15 frequencies, if you use

CTR_8254ModeLoad() - but if you use CTR_StartOutputFreq(), you can only achieve

5, on CTR2 of each of the 5 blocks. (Counters 2, 5, 8, 11, and 14 under the secondary

naming convention. See note at the beginning of this section.)

21

CTR_8254Read
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function CTR_8254Read(DeviceIndex, BlockIndex, CounterIndex: LongWord;

pReadValue: PWord): LongWord; cdecl;

Visual C: unsigned long CTR_8254Read(unsigned long DeviceIndex, unsigned long BlockIndex,

unsigned long CounterIndex, unsigned short *pReadValue);

C#: UInt32 CTR_8254Read(UInt32 DeviceIndex, UInt32 BlockIndex, UInt32 CounterIndex,

out UInt16 ReadValue);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

BlockIndex Index of the 8254 chip you wish to control. See note at the beginning of this

section.

CounterIndex Index of the 8254 counter you wish to control. See note at the beginning of this

section.

pReadValue a pointer to a WORD in which will be stored the value latched and read from the

specified counter

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The counts loaded cannot be read back. Only the “current count” is readable, and the

current count does not initialize with the “(re-)load count value” until the first input

clock occurs. Use CTR_8254ReadStatus() to distinguish between “the data read has

never been loaded from the load count” (called a “null count” by the 8254 chip

specification) and “the current count has been loaded, and decremented at least

once.”

CTR_8254ReadAll
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Currently only supported by the USB-CTR-15. Call if you need support for this function on a different

device.

Purpose: Reads the current count values from all counters.

Delphi: function CTR_8254ReadAll(DeviceIndex: LongWord; pData: PWord): LongWord; cdecl;

Visual C: unsigned long CTR_8254ReadAll(unsigned long DeviceIndex, unsigned short *pData);

C#: UInt32 CTR_8254ReadAll(UInt32 DeviceIndex, [In, Out] UInt16[] pData);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

22

pData a pointer to an array of WORDs in which will be stored the value latched and read

from each counter, in order. Counter 0 in pData[0], etc.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Currently only supported by the USB-CTR-15. Call if you need support for this function

on a different device.

The counts loaded cannot be read back. Only the “current count” is readable, and the

current count does not initialize with the “(re-)load count value” until the first input

clock occurs. Let us know if you need CTR_8254ReadStatusAll() functionality in your

application.

CTR_8254ReadStatus
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The meaning of the status is best described in the 8254 chip spec. Consult the CD\ChipDocs directory,

or search the internet.

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function CTR_8254ReadStatus(DeviceIndex, BlockIndex, CounterIndex: LongWord;

pReadValue: PWord; pStatus: PByte): LongWord; cdecl;

Visual C: unsigned long CTR_8254ReadStatus(unsigned long DeviceIndex, unsigned long

BlockIndex, unsigned long CounterIndex, unsigned short *pReadValue, unsigned char

*pStatus);

C#: UInt32 CTR_8254ReadStatus(UInt32 DeviceIndex, UInt32 BlockIndex, UInt32

CounterIndex, out UInt16 ReadValue, out byte Status);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

BlockIndex Index of the 8254 chip you wish to control. See note at the beginning of this

section.

CounterIndex Index of the 8254 counter you wish to control. See note at the beginning of this

section.

pReadValue a pointer to a WORD in which will be stored the value latched and read from the

specified counter

pStatus a pointer to a BYTE in which will be stored the status latched and read from the

specified counter

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The meaning of the individual bits in the status byte is best described in the 8254 chip

spec. Consult the CD\ChipDocs directory, or search the internet.

23

CTR_8254ReadModeLoad
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The read value is acquired before the mode or write happens

Purpose: Read, then Mode, then Load, a specified counter.

Delphi: function CTR_8254ReadModeLoad(DeviceIndex, BlockIndex, CounterIndex, Mode:

LongWord; LoadValue: Word; pReadValue: PWord): LongWord; cdecl;

Visual C: unsigned long CTR_8254ReadModeLoad(unsigned long DeviceIndex, unsigned long

BlockIndex, unsigned long CounterIndex, unsigned long Mode, unsigned short

LoadValue, unsigned short *pReadValue);

C#: UInt32 CTR_8254ReadModeLoad(UInt32 DeviceIndex, UInt32 BlockIndex, UInt32

CounterIndex, UInt32 Mode, UInt16 LoadValue, out UInt16 ReadValue);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The reading is taken before the mode and load occur.

This operation takes a single USB transaction, making it at least 500usec faster than

issuing the three operations independently.

See CTR_8254LoadRead(), CTR_8254Mode(), and CTR_8254Load() for additional

notes.

Some important notes about the following CTR_8254 functions:

These functions only apply to the USB-CTR-15

CTR_8254SelectGate() and CTR_8254ReadLatched() are used in measuring frequency.

To measure frequency one must count pulses for a known duration. In simplest terms, the

number of pulses that occur during 1 second is the frequency, in Hertz. In the USB-CTR-15

you can create a known duration by configuring one counter output to act as a “gating” signal

for any collection of other counters. The other “measurement” counters will only decrement

during the “high” side of the gate signal, which we can control.

So, to measure frequency:

1. Create a gate signal of known duration by calling CTR_ModeLoad() on one

or more concatenated counters. Use Mode 3, Square Wave Generation, for

at minimum the last counter in the chain. (Mode 2 should be used for

counters earlier in the chain. Due to how the counter interprets odd vs

even load values in Mode 3, avoid loading odd numbers for the Mode 3

counter, or a ±1 “factor” in the gate duration intrudes.)

2. Connect this gating signal to the gate pins of the “measurement”

counter(s)

3. Connect the frequency(-ies)-to-be-measured to the input pin(s) of the

same counter(s)

4. Configure each of those counters with Mode 2 and a known load value (0 is

best)

5. Call CTR_8254SelectGate() to tell the board which counter is generating

that gate

24

6. Call CTR_8254ReadLatched() once in a while to read the latched count

values from all the “measurement” counters

In practice, it may not be possible to generate a gating signal of sufficient duration from a

single counter. Simply concatenate two or more counters into a series (daisy-chain them), and

use the last counter’s output as your gating signal. This last counter in the chain should be

reported as the “gate source” using CTR_8254SelectGate().

Once a value has been read from a counter using the CTR_8254ReadLatched() call, it can be

translated into actual Hz by dividing the count value returned by the high-side-duration of the

gating signal, in seconds. For example, if your gate is configured for 10Hz, the high-side lasts

0.05 seconds; if you read a delta-counts of 1324 via the CTR_8254ReadLatched() call, the

frequency would be “1324 / 0.05", or 26.48KHz.

To be clear: the counters are count-down-only. Subtract the reading from the load value to

determine the delta-counts for use in the calculation. I.e., if you use “0” as your load value,

and read 56001 counts from the CTR_8254_ReadLatched() call, the delta-counts is 65536 -

56001 = 9535 counts. If your gate is configured for 10Hz, the input frequency would be “9535

/ 0.05", or 190.7kHz.

CTR_8254SelectGate
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Currently only supported by the USB-CTR-15

Purpose: This function selects a counter for use as the gate in frequency measurement on other

counters, and starts the frequency measurement process.

Delphi: function CTR_8254SelectGate(DeviceIndex, GateIndex: LongWord): LongWord; cdecl;

Visual C: unsigned long CTR_8254SelectGate(unsigned long DeviceIndex, unsigned long

GateIndex);

C#: UInt32 CTR_8254SelectGate(UInt32 DeviceIndex, UInt32 GateIndex);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

GateIndex Index of the counter output being used as the gating signal, from 0-14.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Currently only supported by the USB-CTR-15

CTR_8254ReadLatched
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Currently only supported by the USB-CTR-15

Purpose: Read the latest values latched by the board during frequency measurement.

Delphi: function CTR_8254ReadLatched(DeviceIndex: LongWord; pData: PWord): LongWord;

cdecl;

25

Visual C: unsigned long CTR_8254ReadLatched(unsigned long DeviceIndex, unsigned short

*pData);

C#: UInt32 CTR_8254ReadLatched(UInt32 DeviceIndex, [In, Out] UInt16[] pData);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

pData A pointer to the first of an array of 15 WORDs, and one BYTE, in which will be

stored the most recent values latched and read from the counters by the board.

After the array of WORDs is one additional BYTE. This byte contains useful

information when optimizing polling rates. If the value of the byte is “0", you’re

looking at old data, and are reading faster than your Gate signal is running.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Currently only supported by the USB-CTR-15

For advanced users: The value of the last byte returned is the number of Gate

events that have occurred since you last read the data.

“0” therefore means “old data, already seen, reading too

often” and any number higher than “1” means “I could be

getting data more often by reading faster by this factor”

ANALOG TO DIGITAL

The Analog to Digital inputs on the USB product line fall into two board categories: Analog Inputs provided

by any board in the USB-AIx family, and Analog Inputs provided by any other USB board.

The USB-AIx family analog input products are optimized for performing analog-to-digital conversions, with

a wide variety of configurations and options available to tune the inputs to fit your exact needs, including

resolution, samples per second, calibration and reference options, elaborate signal-conditioning, etc.

The other category of analog inputs, however, are provided to monitor simple DC voltage levels with little

or no flexibility in hardware or software.

The USB-AIx analog inputs (“AIx”) can use all of the API functions presented in this section.

The non AIx inputs, on the other hand, can only use ADC_GetChannelV(), ADC_GetScanV(),

ADC_GetChannel(), and ADC_GetScan(). No other functions described in this chapter are useful for

analog input products other than members of the USB-AIx family.

ADC_GetScanV
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The easiest way to read your data, but often can’t achieve more than several hundred Hz, slower

depending on options.

26

Purpose: Read the current voltage level on all inputs within the scan limits configured

Delphi: function ADC_GetScanV(DeviceIndex: LongWord; pBuf: PDouble): LongWord; cdecl;

Visual C: unsigned long ADC_GetScanV(unsigned long DeviceIndex, double *pBuf);

C#: UInt32 ADC_GetScanV(UInt32 DeviceIndex, [In, Out] double[] pBuf);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

pBuf Pointer to the first of an array of double precision IEEE floating point numbers.

Each element in the array will receive the value read from the corresponding A/D

input channel. The array must be at least as large as the number of A/D input

channels your product contains (16, 32, 64, 96, or 128) - but it is safe to always

pass a pointer to an array of 128 IEEE doubles.

Only elements in the array corresponding to A/D channels actually acquired during

the scan will be updated: start-channel through end-channel, inclusive. Other

values will remain unchanged.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function converts input counts to voltages based on the range previously

configured with ADC_Init or ADC_SetConfig.

On boards with A/Ds that don't support ADC_SetConfig(), it scans all channels,

without oversampling.

It will take data at the configured number of oversamples or more, average the

readings from the channels, and convert the counts to voltage.

This function performs many housekeeping USB transactions to make it simple to use.

Many of these steps could be performed one-time, during init or de-init of the

program. Doing so would improve the performance of the ADC_GetScanV() concept.

For more information on a faster but less convenient API that moves these

housekeeping functions out of the acquisition loop, please refer to the section on

ADC_GetFastScanV().

This convenience function should readily achieve 0 to 100 Hz operation, on up to 128

channels.

ADC_GetChannelV

APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Note: slow

Purpose: Read one voltage input’s current value

Delphi: function ADC_GetChannelV(DeviceIndex, ChannelIndex: LongWord; pBuf: PDouble):

LongWord; cdecl;

Visual C: unsigned long ADC_GetChannelV(unsigned long DeviceIndex, unsigned long

ChannelIndex, double *pBuf);

27

C#: UInt32 ADC_GetChannelV(UInt32 DeviceIndex, UInt32 ChannelIndex, out double

pBuf);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

ChannelIndex number indicating which channel's data you wish to get

pBuf a pointer to a double precision IEEE floating point number which will receive the

value read

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function performs an ADC_GetScanV() and returns the specified channel’s data.

Reading two channels using ADC_GetChannelV() is therefore more-than-twice as slow

as using ADC_GetScanV.

This function is provided only for ease-of-use.

ADC_GetScan
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Returns data in “counts”, which expose the “digital” nature of the conversion. Also slow,

ADC_GetScanV()

Purpose: This simple function takes one scan of A/D data, in counts.

Delphi: function ADC_GetScan(DeviceIndex: LongWord; pBuf: PWord): LongWord; cdecl;

Visual C: unsigned long ADC_GetScan(unsigned long DeviceIndex, unsigned short *pBuf);

C#: UInt32 ADC_GetScanV(UInt32 DeviceIndex, [In, Out] double[] pBuf);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

pBuf Pointer to an array of WORDs. Each element in the array will receive the value

read from the corresponding A/D input channel. The array must be at least as

large as the number of A/D input channels your product contains (16, 32, 64, 96,

or 128) - but it is safe to always pass a pointer to an array of 128 WORDs.

Only elements in the array corresponding to A/D channels actually acquired during

the scan will be updated: start-channel through end-channel, inclusive. Other

values will remain unchanged.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: All counts are offset-binary coded, and left-justified (12-bit boards read count values

0x0000 through 0xFFF0, with 0x0000 being “minimum input voltage” and 0xFFF0

being “maximum input voltage”

28

ADC_GetConfig
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function ADC_GetConfig(DeviceIndex: LongWord; pConfigBuf: Pointer; var

ConfigBufSize: LongWord): LongWord; cdecl;

Visual C: unsigned long ADC_GetConfig(unsigned long DeviceIndex, void *pConfigBuf, unsigned

long *ConfigBufSize);

C#: UInt32 ADC_GetConfig(UInt32 DeviceIndex, [In, Out] byte[] pConfigBuf, ref UInt32

ConfigBufSize);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

pConfigBuf a pointer to the first of an array of bytes for configuration data

ConfigBufSize a pointer to a variable holding the number of configuration bytes to read. Will be

set to the number of configuration bytes read

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes:

ADC_Initialize
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-AI16-16A and USB-AI12-16A only.

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function ADC_Initialize(DeviceIndex: LongWord; pConfigBuf: Pointer; var

ConfigBufSize: LongWord; CalFileName: PChar): LongWord; cdecl;

Visual C: unsigned long ADC_Initialize(unsigned long DeviceIndex, void *pConfigBuf, unsigned

long *ConfigBufSize, char *CalFileName);

C#: UInt32 ADC_Initialize(UInt32 DeviceIndex, [In, Out] byte pConfigBuf, ref UInt32

pConfigBufSize, [In, Out] Char[] CalFileName);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pConfigBuf a pointer an array of configuration bytes, identical to that used in ADC_SetConfig()

ConfigBufSize a pointer to a variable holding the number of configuration bytes to write.

CalFileName the file name of a calibration file, or a command string. See ADC_SetCal() for

details.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

29

Notes: ADC_Initialize just calls both ADC_SetConfig() and ADC_SetCal() conveniently. Refer

to those two functions for details on the parameters.

ADC_SetConfig
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Perform extensive configuration of analog input circuits on the USB-AIx family of

products.

Delphi: function ADC_SetConfig(DeviceIndex: LongWord; pConfigBuf: Pointer; var

ConfigBufSize: LongWord): LongWord; cdecl;

Visual C: unsigned long ADC_SetConfig(unsigned long DeviceIndex, void *pConfigBuf, unsigned

long *ConfigBufSize);

C#: UInt32 ADC_SetConfig(UInt32 DeviceIndex, [In, Out] byte[] pConfigBuf, ref UInt32

ConfigBufSize);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pConfigBuf a pointer to the first of an array of bytes for configuration data

ConfigBufSize a pointer to a variable holding the number of configuration bytes to write (21

bytes, typically)

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The configuration of the USB-AIx analog inputs can be configured in one function call

via ADC_SetConfig, but the array of configuration options can be a little confusing.

Feel free to use the individual configuration calls, documented next.

Configuration bytes for analog input boards(the USB-AIx family) are as follows:

[00h] … [0Fh] [10h] [11h] [12h] [13h] [14h]

Range

Code 0
…

Range

Code 15

Cal.

Code

Trigger &

Counter

Start & End

Channel
Oversample

Extended

Channel

A configuration of 21 zeros is close to an "ordinary" use; you'll likely want to set timer or external trigger,

and start and end channels.

Config Bytes 00-0Fh:

Range codes correspond to ranges as follows:

Range Code 00 01 02 03 04 05 06 07

Range 0-10V ±10V 0-5V ±5V 0-2V ±2V 0-1V ±1V

Add 0x08 to the range code for any "lower" channel(s) to configure that channel as differential.

These range codes are the shown for the standard, un-signal-conditioned AI input ranges. If you’re using

a submultiplexer, the range chosen on those channels is further modified by the range selected using the

table above.

The USB-AIx supports the use of sub-multiplexer boards to increase the number of channels, and/or to

provide elaborate and flexible signal-conditioning options. The 16 “Range Code” entries in the

30

ADC_SetConfig (elements 00h-0Fh in the byte array) each control the input range/gain on one or more

channels, as follows:

16-Channel Boards

Config Byte 00h 01h … 07h 08h … 0Eh 0Fh

sets range on channels: 0 1 … 7 8 … 14 15

"64M" Boards (64-channel)

Config Byte 00h 01h … 07h 08h … 0Eh 0Fh

sets range on channels: 0-3 4-7 … 28-31 32-35 … 56-59 60-63

Other Boards (32-, 64-, 96-, or 128-channel)

Config Byte 00h 01h … 07h 08h … 0Eh 0Fh

sets range on channels: 0-7 8-15 … 56-63 64-71 … 112-119 120-127

Please note: When using differential mode, the ADC_SetConfig array elements 8-15 are unused.

Config Byte 10h:

Calibration Mode configuration. Typical applications will always write “0x00” to this config byte.

Calibration

Code

Expected

00h The ADC will acquire data from the external pins, as normally expected user input

01h The ADC will acquire the onboard Unipolar Ground reference 0V

03h The ADC will acquire the onboard Unipolar Full-Scale voltage reference 9.9339V @10V

unipolar range

05h The ADC will acquire the onboard Bipolar Zero reference 0V

07h The ADC will acquire the onboard Bipolar Full-Scale voltage reference 9.8678V @ 10V

bipolar range

Config Byte 11h:

Trigger & counter 0 CLK configuration

Bit d7 d6 d5 d4 d3 d2 d1 d0

Value Reserved, use 0
CTR0

EXT

Falling

Edge
Scan

External

Trigger

Timer

Trigger

• If CTR0 EXT is set, counter 0 is externally-clocked; otherwise, counter 0 is clocked by the onboard

10MHz clock.

• If Falling Edge is set, A/D acquisition is triggered by the falling edge of its trigger source;

otherwise, A/D acquisition is triggered by the rising edge of its trigger source.

• If Scan is set, a single A/D trigger will acquire all channels from start channel to end channel, with

oversampling (if so configured), at maximum speed. Otherwise, a single A/D trigger will cause a

single conversion, iterating through oversamples and channels.

• If External Trigger is set, the external A/D trigger pin is an A/D trigger source. Otherwise, this pin

is ignored. Please note: the trigger pin can trigger a Scan, or a single Conversion. It is not used to

start a sequence of Scans or Conversions.

• If Timer Trigger is set an onboard pacing clock circuit is used as an A/D trigger source. Otherwise,

the output of the pacing clock circuit is ignored.

Config Byte 12h and Config Byte 14h:

Start channel and end channel configuration (for “scans”)

31

Bits 4-7 0-3

config byte 12h End Channel bits 0-3 Start Channel bits 0-3

config byte 14h End Channel bits 4-7 Start Channel bits 4-7

For example, to start at 0 and end at 63 (3Fh), set config byte 12h to F0h and config byte 14h to 30h. To

start at 7 and end at 107 (6Bh), set config byte 12h to B7h and config byte 14h to 60h. In any case, if the

end channel is less than the start channel, then the board's behavior is unspecified.

It may be more convenient to set these bytes by calling ADC_SetScanLimits.

Config Byte 13h:

Oversample is a number indicating how many extra samples should be acquired from each channel before

moving on to the next. In a noisy environment, the samples can be averaged together by software to

effectively reduce noise. The number set here is in addition to the single acquisition of every channel that

happens normally. Therefore, passing an oversample of “zero” results in one conversion per channel,

passing an oversample of “one” (1) results in two conversions per channel, and passing “255” will result in

a total of 256 conversions per channel being taken.

ADC_RangeAll
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: This utility function performs a read-modify-write of the ADC_SetConfig structure’s

first 16 bytes (the gain/range codes).

Delphi: function ADC_RangeAll(DeviceIndex: LongWord; pGainCodes: PByte; bDifferential:

LongBool): LongWord; cdecl;

Visual C: unsigned long ADC_RangeAll(unsigned long DeviceIndex, unsigned char *pGainCodes,

unsigned long bDifferential);

C#: UInt32 ADC_RangeAll(UInt32 DeviceIndex, ref byte GainCodes, UInt32 bDifferential);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pRangeCodes a pointer to an array of 16 bytes, each of which contains a range code.

bDifferential Use FALSE for single-ended mode, use TRUE for differential mode

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: See ADC_SetConfig() for details about valid Range Codes

This function cannot configure individual channels as differential, only all-or-none. To

configure single-ended/differential on a per-channel basis, use ADC_Range1() or

ADC_SetConfig()

32

ADC_Range1
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function ADC_Range1(DeviceIndex, ADChannel: LongWord; GainCode: Byte;

bDifferential: LongBool): LongWord; cdecl;

Visual C: unsigned long ADC_Range1(unsigned long DeviceIndex, unsigned long ADChannel,

unsigned char GainCode, unsigned long bDifferential);

C#: UInt32 ADC_Range1(UInt32 DeviceIndex, UInt32 ADChannel, byte GainCode, UInt32

bDifferential);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

RangeEntry number from 0-15 indicating an A/D range code entry on the device

RangeCode a range code byte

bDifferential For range code entries 0-7, use FALSE for single-ended mode, use TRUE to pair it

with the respective channel 8-15 in differential mode. For channels 8-15, use

FALSE

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: See ADC_SetConfig() for details about valid Range Codes.

Also, see ADC_SetConfig() for details about mapping A/D Channel numbers to Range

Entries.

ADC_SetScanLimits
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose:

Delphi: function ADC_SetScanLimits(DeviceIndex, StartChannel, EndChannel: LongWord):

LongWord; cdecl;

Visual C: unsigned long ADC_SetScanLimits(unsigned long DeviceIndex, unsigned long

StartChannel, unsigned long EndChannel);

C#: UInt32 ADC_SetScanLimits(UInt32 DeviceIndex, UInt32 StartChannel, UInt32

EndChannel);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

33

StartChannel the number of the first channel you want in a scan

EndChannel the number of the last channel you want in a scan

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: a “Scan” will consist of data from all channels from StartChannel through EndChannel.

ADC_ADMode
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Configure the A/D trigger source and Calibration Acquisition Mode

Delphi: function ADC_ADMode(DeviceIndex: LongWord; TriggerMode, CalMode: Byte):

LongWord; cdecl;

Visual C: unsigned long ADC_ADMode(unsigned long DeviceIndex, unsigned char TriggerMode,

unsigned char CalMode);

C#: UInt32 ADC_ADMode(UInt32 DeviceIndex, byte TriggerMode, byte CalMode);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

TriggerMode configuration of A/D trigger mode and CTR0 input clock source.

CalMode byte indicating which A/D input to acquire: external pins, or one of the onboard

calibration references.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Refer to ADC_SetConfig() for details.

ADC_SetOversample
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Oversample can make your data quieter, but slows down the acquisition and adds skew.

Purpose: This utility function provides read-modify-write access to the “Oversample”

configuration byte in the ADC_SetConfig array.

Delphi: function ADC_SetOversample(DeviceIndex: LongWord; Oversample: Byte):

LongWord; cdecl;

Visual C: unsigned long ADC_SetOversample(unsigned long DeviceIndex, unsigned char

Oversample);

C#: UInt32 ADC_SetOversample(UInt32 DeviceIndex, byte Oversample);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

34

Oversample the number of extra samples to take from each channel in a scan.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The total number of conversions per channel is 1 + this setting.

ADC_SetCal
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-AI16-16A and USB-AI12-16A only.

Purpose: Configure the analog input calibration of a USB-AIx board.

Delphi: function ADC_SetCal(DeviceIndex: LongWord; CalFileName: PChar): LongWord; cdecl;

Visual C: unsigned long ADC_SetCal(unsigned long DeviceIndex, char *CalFileName);

C#: UInt32 ADC_SetCal(UInt32 DeviceIndex, [In, Out] Char[] CalFileName);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

CalFileName either the file name of a calibration file, or one of several reserved command

strings. A file name can include the full path, or be relative to the current

directory. A command string of ":AUTO:" causes this function to generate a

calibration file from the calibration references and upload that. A command string

of ":NONE:" causes this function to upload an "uncalibrated" calibration file

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: “:NONE:” can be written, and is identical to, “:1TO1:”

It is not valid to call ADC_SetCal() on boards that do not support calibration. Use

ADC_QueryCal() to determine if your device supports calibration.

Note: Some revisions of the driver will return errors under all conditions if you attempt

to ADC_SetCal() unsupported hardware; other driver revisions will return

ERROR_SUCCESS if you explicitly request “:NONE:” (or “:1TO1:”) on a board that

does not support calibration, as the request, although skipped, was technically

successful - the calibration table of unsupported hardware is always :NONE:

ADC_QueryCal
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine if a given device supports uploaded Calibration tables

Delphi: function ADC_QueryCal(DeviceIndex: LongWord): LongWord; cdecl;

Visual C: unsigned long ADC_QueryCal(unsigned long DeviceIndex);

C#: UInt32 ADC_QueryCal(UInt32 DeviceIndex);

Argument Description

35

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

ERROR_NOT_SUPPORTED (50) will be returned for USB-AIx devices that do not

support calibration table upload.

Notes: It is useful to call before any call to ADC_SetCal(), to avoid trying to issue calibration

uploads on unsupported hardware.

A/D HIGH SPEED ACQUISITION
Our USB-AIx family of Analog Input boards support a variety of acquisition modes.

“ADC_GetScanV()”, described above, is the simplest and most convenient of these. However,

ADC_GetScanV is not synchronous to either an external trigger source, nor to the onboard pacer clock;

rather, it simply takes data when commanded by software. Additionally, the overhead of the init and

deinit steps performed limits the maximum scan rate to less than approximately 100Hz.

If you need to acquire data faster than 100Hz per channel, or need the data to be acquired periodically or

synchronous to an external pulse-train, you will need to use one of the “high-speed acquisition modes”

described below.

The set of high-speed acquisition modes is always increasing as we make improvements to our software

suite.

At this time, two high-speed modes are published: Poll Mode, and Callback Mode.

Poll Mode

Poll mode is implemented using ADC_BulkAcquire(), and is the oldest of the high speed acquisition modes

provided.

It:

• takes a fixed number of samples from the A/D then stops (up to 2 gigasamples),

• allows full speed acquisition of input channels (up to 500k readings/second),

• uses either the onboard pacer clock or the external trigger as scan or conversion trigger,

• requires you to to allocate and pass a buffer large enough to hold all the readings.

• uses ADC_BulkPoll() to determine how much data in the allocated buffer is “valid” - your program

can use as much data as is valid immediately, while the remainder of the data is still being

acquired.

Callback Mode:

Callback mode is implemented using ADC_BulkContinuousCallbackStart(), and is the newer of the high

speed modes published.

It:

• acquires data until stopped,

• allows full-speed acquisition,

• uses either the onboard pacer clock or the external trigger pin,

• does not require the preallocation of a buffer large enough to take all the readings,

• does not require you to know in advance how many readings to take.

• uses callbacks to inform your application when new data is available. If your programming

language supports callbacks, this can greatly reduce code complexity.

ADC High-Speed Polling Mode

36

“Polling” might seem like something of a misnomer: you don’t actually acquire data by polling the card.

Rather, the card and drivers cooperate silently in the background to collect the data and stuff it into a

buffer for your use. However, you do poll “how much data is ready for me” information from the driver,

using the ADC_BulkPoll() function, and this is how Polling mode got its name.

A true, slow, polling mode is available via the “ADC_Get” family of functions.

ADC_BulkAcquire
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function ADC_BulkAcquire(DeviceIndex: LongWord; BufSize: LongWord; pBuf:

Pointer): LongWord; cdecl;

Visual C: unsigned long ADC_BulkAcquire(unsigned long DeviceIndex, unsigned long BufSize,

void *pBuf);

C#: UInt32 ADC_BulkAcquire(UInt32 DeviceIndex, UInt32 BufSize, [In, Out] UInt16[]

Buf);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BufSize the size, in bytes, of the buffer to receive the data

pBuf a pointer to the buffer in which to receive data

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function will return immediately. A return value of “ERROR_SUCCESS”(equal to

0) indicates that bulk data is being acquired in the background, and the buffer should

not be deallocated or moved. Use ADC_BulkPoll() to query this background operation.

ADC_BulkPoll
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Check how much ADC data remains to be taken, and how much is available for use.

Delphi: function ADC_BulkPoll(DeviceIndex: LongWord; var BytesLeft: LongWord): LongWord;

cdecl;

Visual C: unsigned long ADC_BulkPoll(unsigned long DeviceIndex, unsigned long *BytesLeft);

C#: UInt32 ADC_BulkPoll(UInt32 DeviceIndex, out UInt32 BytesLeft);

Argument Description

DeviceIndex DeviceIndex of the card you wish to query; generally either diOnly or a specific

device’s Device Index.

37

BytesLeft a pointer to a variable which will be set to the number of bytes of A/D data

remaining to be taken

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Any data that has been taken is available in the buffer, starting from the beginning.

For example, if ADC_BulkAcquire() was called to take 1024 MB of data, and

ADC_BulkPoll() indicates 768 MB is left to be taken, then the first 256 MB of data is

available.

ADC Callback Mode

ADC_BulkContinuousCallbackStart
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function ADC_BulkContinuousCallbackStart(DeviceIndex: LongWord; BufSize:

LongWord; BaseBufCount: LongWord; Context: LongWord; pCallback: Pointer):

LongWord; cdecl;

Visual C: unsigned long ADC_BulkContinuousCallbackStart(unsigned long DeviceIndex,

unsigned long BufSize, unsigned long BaseBufCount, unsigned long Context, void

*pCallback);

C#: UInt32 ADC_BulkContinuousCallbackStart(UInt32 DeviceIndex, UInt32 BufSize,

UInt32 BaseBufCount, UInt32 Context, ADCallback pCallback);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BufSize number of bytes (a multiple of 512) for each buffer in the software FIFO

BaseBufCount number of buffers in the software FIFO, for example 64. Minimum 2. This value is

used to pre-allocate buffers. The code will allocate new buffers as needed, but

allocating memory is relatively slow and could result in data loss. See Flags Bit 2

for more information.

Context any value, will be passed to the callback

pCallback pointer to an ADContCallback() function to receive buffers

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Starts a continuous bulk acquire process. A worker thread will acquire data, using the

current configuration as set by ADC_SetConfig or its helper functions, a buffer at a

time; another worker thread will pass a buffer at a time to the callback. The clock

should be stopped while calling this function, like so:

double Hz = 0.0;
CTR_StartOutputFreq(DeviceIndex, 0, &Hz);
ADC_SetConfig(DeviceIndex, &Config[0], ConfigSize);
ADC_BulkContinuousCallbackStart(DeviceIndex, 16*1024, 32, 0, &ADCallback);
Hz = 30000;
CTR_StartOutputFreq(DeviceIndex, 0, &Hz);

38

The pCallback parameter is a pointer to a function with the following signature:

void ADContCallback(

UInt16 *pBuf - pointer to the first of an array of WORD samples

UInt32 BufSize - size, in bytes, of the array passed in pBuf; can be zero

UInt32 Flags - a bitmask of flags, see table, below.

UInt32 Context - a copy of the Context parameter passed to

ADC_BulkContinuousCallbackStart()

)

Each callback the driver will fill in its parameters as indicated. Note that it will be called

from an alternate thread context. Flags are as follows:

Bit Mask Meaning

0 factory use only

1 Flags & 2
End of stream; this is the last buffer. Typically one last zero-size buffer

will be passed, in order to set this flag.

2 Flags & 4

The BaseBufCount was too small; this buffer was added to the FIFO,

which may interrupt the data stream afterward. At sampling rates of a

few Hz, a BaseBufCount of 2 is plenty. On a fast computer, a

BaseBufCount of 64 can handle up to 500kHz sampling rate. High

sampling rates on a slow computer may require higher BaseBufCount

values.

ADC_BulkContinuousEnd
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Terminate continuous acquisition and cease callbacks.

Delphi: function ADC_BulkContinuousEnd(DeviceIndex: LongWord; pIOStatus: PLongWord):

LongWord; cdecl;

Visual C: unsigned long ADC_BulkContinuousEnd(unsigned long DeviceIndex, unsigned long

*pIOStatus);

C#: UInt32 ADC_BulkContinuousEnd(UInt32 DeviceIndex, out UInt32 pIOStatus);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pIOStatus pointer to a variable to receive I/O status of the continuous process. If you don't

care about the I/O status, pass a null pointer

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes:

DIGITAL TO ANALOG

39

The AIOUSB Digital To Analog API operates in two distinct modes: direct mode, and streaming mode.

Only the USB-DA12-8A device’ DACs support streaming mode operation at this time.

All DACs, including those provided by the USB-DA12-8A, support direct mode operation.

DAC Direct Mode
DACSetBoardRange

APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Turn on the DAC voltage references. In some products also configures the DAC

calibration table for bipolar or unipolar use. Some boards also use this function to set

the output range.

Delphi: function DACSetBoardRange(DeviceIndex: LongWord; RangeCode: LongWord):

LongWord; cdecl;

Visual C: unsigned long DACSetBoardRange(unsigned long DeviceIndex, unsigned long

RangeCode);

C#: UInt32 DACSetBoardRange(UInt32 DeviceIndex, UInt32 RangeCode);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

RangeCode the range code to set for the board; see the hardware manual for your device's

range codes

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: Must be called before analog outputs will produce meaningful outputs.

DACDirect
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Update the output of a single DAC

Delphi: function DACDirect(DeviceIndex: LongWord; Channel: Word; Value: Word):

LongWord; cdecl;

Visual C: unsigned long DACDirect(unsigned long DeviceIndex, unsigned long Channel,

unsigned short Counts);

C#: UInt32 DACDirect(UInt32 DeviceIndex, UInt16 Channel, UInt16 Counts);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

40

Channel number from 0-7 indicating which DAC you wish to set

Value count value to which you wish to set the DAC

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: On the USB-DA12-8A family, a Value of 000h indicates the lowest DAC level and

0FFFh indicates the highest DAC level; other values are proportional.

On the USB-AO family, and all other USB analog outputs, Value varies from 0000h

through FFFFh or FFF0h, for the 16- and 12-bit models, respectively.

DACMultiDirect
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

The most efficient method to output voltages

Purpose: Update the output(s) of a list of DACs

Delphi: function DACMultiDirect(DeviceIndex: LongWord; pDACData: PWord; DACDataCount:

LongWord): LongWord; cdecl;

Visual C: unsigned long DACMultiDirect(unsigned long DeviceIndex, void *pDACData, unsigned

long DACDataCount);

C#: UInt32 DACMultiDirect(UInt32 DeviceIndex, [In, Out] UInt16[] pDACData, UInt32

DACDataCount);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pDACData a pointer to an array of WORDs, consisting of channel/value pairs

DACDataCoun

t

indicates how many channel/value pairs are in the pDACData array

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: to update a single channel with DACMultiDirect you could pass an array consisting of a

single pair of WORDS, the channel number in the first, and the count value in the

second. Normally, however, you pass an array containing more than one of these

pairs.

Calling DACMultiDirect() a single time takes very slightly longer than calling

DACDirect() a single time, but DACMultiDirect can update as many as 16 DAC

channels with a single USB transaction. Therefore, if you are updating more than one

DAC’s value, DACMultiDirect() will always execute faster.

DAC Streaming Mode

41

DACOutputProcess
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: This function begins a one-shot DAC output process. Rather than streaming DAC data

continuously, it opens a connection, sends a single block of data, then closes. The DAC

data will then be clocked out based on the EOP bit, see DACOutputFrameRaw() below

for details

Delphi: function DACOutputProcess(DeviceIndex: LongWord; var ClockHz: Double;

NumSamples: LongWord; pSampleData: PWord): LongWord; cdecl;

Visual C: unsigned long DACOutputProcess(unsigned long DeviceIndex, double *ClockHz,

unsigned long NumSamples, unsigned short *SampleData);

C#: UInt32 DACOutputProcess(UInt32 DeviceIndex, ref double ClockHz, UInt32

NumSamples, [In, Out] UInt16 SampleData);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pClockHz a pointer to a double precision IEEE floating point number containing the desired

output clock frequency. This value is set by the driver to the actual frequency at

which DAC data will be clocked out, as limited by the device’s capabilities.

NumSamples the total number of samples to output. Notably, this is not a number of "points"

SampleData a pointer to an array of WORDs; each DAC value is stored in a WORD, so it should

contain (samples to output) WORDs. The features are controlled by the upper bits

in the data array; for details on this format, refer to DACOutputFrameRaw()

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: CAUTION: A Known Bug requires your waveform to be 65537 samples or

larger. If you intend to send waveforms shorter than this, build your shorter

waveform as usual, then pad it out to 65537 using a pad value of 0x1nnn, where

“nnn” is the count value in your built waveform’s first point’s first data sample. (The

first count value for DAC #0.)

DACOutputOpen
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: This function begins a DAC streaming process. The stream is divided into “points”;

each point contains data for one or more DACs, and during the streaming process the

onboard counter/timer clocks out points at a steady rate.

Delphi: function DACOutputOpen(DeviceIndex: LongWord; var ClockHz: Double): LongWord;

cdecl;

Visual C: unsigned long DACOutputOpen(unsigned long DeviceIndex, double *ClockHz);

C#: UInt32 DACOutputOpen(UInt32 DeviceIndex, ref double ClockHZ);

42

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

pClockHz a pointer to a double precision IEEE floating point number containing the desired

output clock frequency. This value is set by the driver to the actual frequency at

which DAC data will be clocked out, as limited by the device’s capabilities.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: All DACs in a single “point” will be updated simultaneously (on the same clock tick).

The next point will be output on the subsequent clock tick.

DACOutputClose
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only. Deprecated: DACOutputCloseNoEnd is preferred for new code.

Purpose: Deprecated

This function causes the USB-DA12-8A to cease streaming data

Delphi: function DACOutputClose(DeviceIndex: LongWord; bWait: LongBool): LongWord;

cdecl;

Visual C: unsigned long DACOutputClose(unsigned long DeviceIndex, unsigned long bWait);

C#: UInt32 DACOutputClose(UInt32 DeviceIndex, UInt32 bWait);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

bWait reserved for future expansion; currently, this function always waits for the

streaming process to complete before returning to the caller

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function is deprecated because it will insert an EOM bit on the last data point

under certain circumstances.

DACOutputCloseNoEnd
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: This function closes a DAC streaming process without ending it. This is most useful

when you've set LOOP or EOM via DACOutputFrameRaw().

Delphi: function DACOutputCloseNoEnd(DeviceIndex: LongWord; bWait: LongBool):

LongWord; cdecl;

Visual C: unsigned long DACOutputCloseNoEnd(unsigned long DeviceIndex, unsigned long

bWait);

43

C#: UInt32 DACOutputCloseNoEnd(UInt32 DeviceIndex, UInt32 bWait);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

bWait reserved for future expansion; currently, this function always waits for the

streaming process to complete before returning to the caller.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes:

DACOutputSetCount
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: This function sets the number of DACs involved in each DAC streaming point

henceforth.

Delphi: function DACOutputSetCount(DeviceIndex, NewCount: LongWord): LongWord; cdecl;

Visual C: unsigned long DACOutputSetCount(unsigned long DeviceIndex, unsigned long

NewCount);

C#: UInt32 DACOutputClose(UInt32 DeviceIndex, UInt32 bWait);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

NewCount number from 1-8 indicating the number of DACs in future points

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: When the driver connects to the device, this is initialized to 5 (for ILDA use).

You can set this freely between calls to DACOutputFrameRaw() if you wish.

This value is used to scale the “FramePoints” parameter in subsequent calls to

DAOutputFrameRaw(), make sure it matches.

DACOutputFrame
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only. Deprecated: DACOutputFrameRaw is preferred for new code.

Purpose: Deprecated

This function writes a collection of points (called “a frame”) into the DAC stream.

Delphi: function DACOutputFrame(DeviceIndex, FramePoints: LongWord; FrameData:

PWord): LongWord; cdecl;

44

Visual C: unsigned long DACOutputFrame(unsigned long DeviceIndex, unsigned long

FramePoints, unsigned short *FrameData);

C#: UInt32 DACOutputFrame(UInt32 DeviceIndex, UInt32 FramePoints, [In, Out] UInt16

pFrameData);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

FramePoints the number of points in the frame - NOT BYTES.

FrameData a pointer to an array of WORDs; each DAC value is stored in a WORD, so it should

contain (DAC count) × (points in the frame) WORDs

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: This function is deprecated because it causes the output to start playback

automagically when 1¼ SRAMs worth of samples have been uploaded. It also inserts

an EOM bit if DACOutputClose() is called, under certain circumstances.

All points in any given frame buffer must control the same number of DACs; if, for

example, you wish to output one point with all 8 DACs, followed by 99 points with

only 2 DACs, set the DAC count to 8, output a frame consisting of just the first point,

then set the DAC count to 2, and output a frame of the next 99 points.

If the driver’s internal buffer is full, the function will return “ERROR_NOT_READY”

(equal to 21 decimal); try again in a moment, as the driver’s buffer should drain some

as soon as there’s room in the on-card hardware buffer, and available time on the USB

bus.

DACOutputFrameRaw
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: This function writes a group of “points” (a group of points is referred to as a “frame”)

into the DAC stream.

Delphi: function DACOutputFrameRaw(DeviceIndex, FramePoints: LongWord; FrameData:

PWord): LongWord; cdecl;

Visual C: unsigned long DACOutputFrameRaw(unsigned long DeviceIndex, unsigned long

FramePoints, unsigned short *FrameData);

C#: UInt32 DACOutputFrameRaw(UInt32 DeviceIndex, UInt32 FramePoints, [In, Out]

UInt16 FrameData);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

FramePoints the number of points in the frame - NOT BYTES.

FrameData a pointer to an array of WORDs; each DAC value is stored in a WORD, so it should

contain (DAC count) × (points in the frame) WORDs

Also note: all WORDs, in each point, contain a 12-bit count value AND four control

45

bits (in the highest nybble). See the discussion, below.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: All points in any given frame buffer must control the same number of DACs; if, for

example, you wish to output one point with all 8 DACs, followed by 99 points with

only DAC 0 and 1 changing, set the DAC count to 8, output a frame consisting of just

the first point, then set the DAC count to 2, and output a frame of the next 99 points.

(You set the DAC count using DACOutputSetCount()).

You may continue sending frames using DACOutputFrameRaw() after issuing a

DACOutputStart().

You must continue sending frames to avoid the playback of uninitialized or recycled

memory, if your already-uploaded waveform does not include a LOOP or EOM bit.

This is true streaming, and there is no upper limit to the amount of data in a

waveform that can be written in this manner.

If the driver’s internal buffer is full, the function will return “ERROR_NOT_READY”

(equal to 21 decimal); try again in a moment, as the driver’s buffer should drain some

as soon as there’s room in the on-card hardware buffer, and available time on the USB

bus.

The meanings of the bits in each sample’s WORD in each point are as follows:

Bit # 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Meaning EOM EOF EOP LOOP DAC Value, in counts

• If EOM ("End Of Memory") is set on any sample the board will stop the waveform after outputting

the sample. Do not set EOM if LOOP is set, and vice-versa.

• If EOF ("End Of Frame") is set, the frame pin will be pulsed. The bit is otherwise unused, making it

available for your application, as desired.

• If EOP ("End Of Point") is set, the card will write the point samples to the hardware, and wait for

the next tick. This also has the effect of telling the device that the next WORD in waveform

memory is the beginning of the next point’s data, and therefore is the sample for DAC #0.

• If LOOP is set, the board will "jump" to the beginning of its buffer after outputting the sample. This

can be used to load a "repeating" waveform, like a sine wave or sawtooth, and then loop it without

further attention from the host computer. Indeed, with external power, you can disconnect the USB

cable without interrupting the loop. Do not set LOOP if EOM is set, and vice-versa.

Note that the EOM and LOOP bits are for mutually exclusive uses. Setting them both is reserved for future

expansion.

DACOutputStart
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: Starts your uploaded waveform data updating to the DAC output pins.

Delphi: function DACOutputStart(DeviceIndex: LongWord): LongWord; cdecl;

Visual C: unsigned long DACOutputStart(unsigned long DeviceIndex);

C#: UInt32 DACOutputStart(UInt32 DeviceIndex);

Argument Description

46

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: CAUTION: A Known Bug requires your waveform to be 65537 samples or

larger before starting. If you intend to send waveforms shorter than this, build

your shorter waveform as usual, then pad it out to 65537 using a pad value of

0x1nnn, where “nnn” is the count value in your built waveform’s first point’s first data

sample. (The first count value for DAC #0.)

The following paragraph describes the intended operation:

Note that before starting DAC output you must send the lesser of one SRAM worth of

data (128K bytes, i.e. 65536 samples) or your entire waveform, due to the use of

bank-switched single-ported memory.

You may continue sending frames using DACOutputFrameRaw() after issuing a

DACOutputStart(), and, in fact, if your already-uploaded waveform does not include a

LOOP or EOM bit, must upload additional data to avoid the playback of uninitialized or

recycled memory.

This is true streaming, and there is no upper limit to the amount of data in a

waveform that can be written in this manner.

DACOutputSetInterlock
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

USB-DA12-8A only.

Purpose: Enables or Disables the “Interlock” feature

Delphi: function DACOutputSetInterlock(DeviceIndex: LongWord; bInterlock: LongBool):

LongWord; cdecl;

Visual C: unsigned long DACOutputSetInterlock(unsigned long DeviceIndex, unsigned long

bInterlock);

C#: UInt32 DACOutputSetInterlock(UInt32 DeviceIndex, UInt32 bInterlock);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

bInterlock TRUE to enable interlock, FALSE to disable interlock. While interlock is enabled,

DAC streaming is paused unless the interlock pin is grounded, usually through the

cable. The interlock pin is pin 12 of the DB25 M connector (or, on the OEM version,

pin 7 of the connector named J4)

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The device powers up with the interlock feature disabled.

GENERAL FUNCTIONS

47

AIOUSB_SetStreamingBlockSize
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Reconfigure the size used for the low-level interface to the USB Bulk endpoints.

Delphi: function AIOUSB_SetStreamingBlockSize(DeviceIndex, BlockSize: LongWord):

LongWord; cdecl;

Visual C: unsigned long AIOUSB_SetStreamingBlockSize(unsigned long DeviceIndex, unsigned

long BlockSize);

C#: UInt32 AIOUSB_SetStreamingBlockSize(UInt32 DeviceIndex, UInt32 BlockSize);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

BlockSize the new streaming block size you wish to set. For DIO streaming, this will get

rounded up to the next multiple of 256. For A/D streaming, this will get rounded

up to the next multiple of 512.

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes: The larger the BlockSize, the more lag-tolerance.

The smaller the BlockSize, the less latency between action in software and action in

hardware, or vice versa.

The driver defaults to 8192.

AIOUSB_ClearFIFO
APPLIES TO

DIGITAL

INPUTS

DIGITAL

OUTPUTS

ANALOG

INPUTS

ANALOG

OUTPUTS

BUFFERED DI,

DO, DIO

COUNTER

TIMERS

Purpose: Determine information about the device found at a specific DeviceIndex

Delphi: function AIOUSB_ClearFIFO(DeviceIndex: LongWord; TimeMethod: LongWord):

LongWord; cdecl;

Visual C: unsigned long AIOUSB_ClearFIFO(unsigned long DeviceIndex, unsigned long

TimeMethod);

C#: UInt32 AIOUSB_ClearFIFO(UInt32 DeviceIndex, UInt32 TimeMethod);

Argument Description

DeviceIndex DeviceIndex of the card you wish to control; generally either diOnly or a specific

device’s Device Index.

Method 0 to simply clear the FIFO right away, others per the table below

48

Returns: Standard “Win32" error codes. ERROR_SUCCESS (0) means “Success”.

Notes:

Clear FIFO Method Codes

Code

(decimal) Effect

0 Clear FIFO as soon as command received (and disable auto-clear)

1 Enable auto-clear FIFO every falling edge of DIO port D bit 1 (on digital boards, analog

boards treat this method as identical to “method 0")

5 As 0, but also abort any streaming data flow currently in progress

49

	 USB Software Reference Manual
	INTRODUCTION
	How to use this reference
	How to use the AIOUSB Driver
	When using a single USB Device - ever:
	When you are using, or might someday use, more than one device:

	About Error/Status return values

	DEVICE INDEPENDENT FUNCTIONS
	FUNCTIONS YOU CALL AT INITIALIZATION
	GetDeviceByEEPROMByte
	GetDevices
	QueryDeviceInfo
	GetDeviceSerialNumber
	FUNCTIONS YOU CALL AT DEINITIALIZATION
	AIOUSB_CloseDevice
	ClearDevices
	ResolveDeviceIndex
	GetDeviceByEEPROMData
	OTHER COMMON FUNCTIONS
	CustomEEPROMWrite
	CustomEEPROMRead

	DIGITAL INPUT / OUTPUT
	I/O Groups
	Relays as DIO

	DIO_Configure
	DIO_ConfigureEx
	DIO_ConfigurationQuery
	DIO_WriteAll
	DIO_Write8
	DIO_Write1
	DIO_ReadAll
	DIO_Read8
	DIO_Read1

	BUFFERED DIO
	DIO_StreamOpen
	DIO_StreamClose
	DIO_StreamSetClocks
	DIO_StreamFrame

	COUNTER / TIMERS
	CTR_8254Mode
	CTR_8254Load
	CTR_8254ModeLoad
	CTR_StartOutputFreq
	CTR_8254Read
	CTR_8254ReadAll
	CTR_8254ReadStatus
	CTR_8254ReadModeLoad
	CTR_8254SelectGate
	CTR_8254ReadLatched

	 ANALOG TO DIGITAL
	ADC_GetScanV
	ADC_GetChannelV
	ADC_GetScan
	ADC_GetConfig
	ADC_Initialize
	ADC_SetConfig
	ADC_RangeAll
	ADC_Range1
	ADC_SetScanLimits
	ADC_ADMode
	ADC_SetOversample
	ADC_SetCal
	ADC_QueryCal

	A/D HIGH SPEED ACQUISITION
	ADC High-Speed Polling Mode
	ADC_BulkAcquire
	ADC_BulkPoll

	ADC Callback Mode
	ADC_BulkContinuousCallbackStart
	ADC_BulkContinuousEnd

	DIGITAL TO ANALOG
	DAC Direct Mode
	DACSetBoardRange
	DACDirect
	DACMultiDirect

	DAC Streaming Mode
	DACOutputProcess
	DACOutputOpen
	DACOutputClose
	DACOutputCloseNoEnd
	DACOutputSetCount
	DACOutputFrame
	DACOutputFrameRaw
	DACOutputStart
	DACOutputSetInterlock

	 GENERAL FUNCTIONS
	AIOUSB_SetStreamingBlockSize
	AIOUSB_ClearFIFO

